
Computer Graphics using OpenGL,

3rd Edition

F. S. Hill, Jr. and S. Kelley

Chapter 7.1-4

Three-dimensional
Viewing

S. M. Lea

University of North Carolina at Greensboro

© 2007, Prentice Hall

Introduction

• We will develop methods to fly the jib

camera of Chapter 5 through scenes.

• We will develop mathematical tools to

handle perspective projection.

• We will learn clipping techniques for

perspective projections.

• We will learn how to provide stereo views

of a scene.

The Camera and Perspective

Projection

• The camera has an eye (or view reference
point VRP) at some point in space.

• Its view volume is a portion of a pyramid,
whose apex is at the eye. The straight line from
a point P to the eye is called the projector of P.
(All projectors of a point meet at the eye.)

• The axis of the view volume is called the view
plane normal, or VPN.

• The opening of the pyramid is set by the
viewangle θ (see part b of the figure).

The Camera and Perspective

Projection (3)

The Camera and Perspective

Projection (2)
• Three planes are defined perpendicular to the VPN: the

near plane, the view plane, and the far plane.

• Where the planes intersect the VPN they form
rectangular windows. The windows have an aspect ratio
which can be set in a program.

• OpenGL clips points of the scene lying outside the view
volume. Points P inside the view volume are projected
onto the view plane to a corresponding point P’ (part c).

• Finally, the image formed on the view plane is mapped
into the viewport (part c), and becomes visible on the
display device.

Setting the View Volume

• The default camera position has the eye at
the origin and the VPN aligned with the z-
axis.

• The programmer defines a look point as a
point of particular interest in the scene,
and together the two points eye and look
define the VPN as eye – look.

– This is later normalized to become the vector
n, which is central in specifying the camera
properly. (VPN points from look to eye.)

Setting the View Volume (2)

Setting the View Volume (3)

• To view a scene, we move the camera and aim it
in a particular direction.

• To do this, perform a rotation and a translation,
which become part of the modelview matrix.

• Set up the camera’s position and orientation in
exactly the same way we did for the parallel-
projection camera.

glMatrixMode(GL_MODELVIEW);

// make the modelview matrix current

glLoadIdentity(); // start with a unit matrix

gluLookAt(eye.x, eye.y, eye.z, look.x, look.y,
look.z, up.x, up.y, up.z);

Setting the View Volume (4)

• As before, this moves the camera so its

eye resides at point eye, and it “looks”

towards the point of interest, look.

• The “upward” direction is generally

suggested by the vector up, which is most

often set simply to (0, 1, 0).

Camera with Arbitrary Orientation

and Position

• A camera can have any position and

orientation in the scene.

• Imagine a transformation that picks up the

camera and moves it somewhere in

space, then rotates it around to aim it as

desired.

• To do this we need a coordinate system

attached to the camera: u, v, and n.

Camera with Arbitrary Orientation

and Position (2)

• v points vertically upward, n away from the view

volume, and u at right angles to both n and v.

The camera looks toward -n. All are normalized.

gluLookAt and the Camera

Coordinate System
• gluLookAt takes the points eye and look, and the

vector up

• n must be parallel to eye - look, so it sets n =
eye - look

• u points "off to the side", so it makes u
perpendicular to both n and up: u = up x n

• v must be perpendicular to n and u, so it lets v =
n x u

• Note that v and up are not necessarily in the
same direction, since v must be perpendicular to
n, and up need not be.

gluLookAt and the Camera

Coordinate System (2)

• Effect of gluLookAt

gluLookAt and the Camera

Coordinate System (3)

• The view matrix V created by gluLookAt is

where dx = -eye∙u, dy= -eye∙v, dz= -eye∙n

• V is postmultiplied by M to form the modelview
matrix VM.























0000

zzyx

yzyx

xzyx

dnnn

dvvv

duuu

V

Camera with Arbitrary Orientation

and Position (3)
• Position is easy to describe, but orientation is difficult.

• We specify orientation using the flying terms: pitch,
heading, yaw, and roll.

• The pitch of an airplane is the angle that its longitudinal
axis (running from tail to nose and having direction -n)
makes with the horizontal plane.

• An airplane rolls by rotating about this longitudinal axis;
its roll is the amount of this rotation relative to the
horizontal.

• An airplane’s yaw is angle CW or CCW to the heading.

Camera with Arbitrary Orientation

and Position (4)

• Orientation is described by 3 angles: pitch,

roll, and yaw.

Camera with Arbitrary Orientation

and Position (5)
• These terms can be used with a camera as well.

The figure shows a camera with a coordinate
system attached; it has u, v, and n- axes, and its
origin is at position eye. The camera in part b
has some non-zero roll, whereas the one in part
c has zero roll.

• We most often set a camera to have zero roll,
and call it a “no-roll” camera. The u-axis of a no-
roll camera is horizontal: that is, perpendicular to
the y-axis of the world.

• A no-roll camera can still have an arbitrary n
direction, so it can have any pitch or heading.

Camera with Arbitrary Orientation

and Position (6)

• An airplane’s heading is

the direction in which it is

headed. (Other terms are

azimuth and bearing.)

Specifying a Camera in a Program

• In order to have fine control over camera

movements, we create and manipulate our own

camera in a program.

• After each change to this camera is made, the

camera tells OpenGL what the new camera is.

• We create a Camera class that knows how to do

all the things a camera does.

• We use 2 helper classes: Point3 and Vector3.

Point3 Class

class Point3{

public:

float x,y,z;

void set(float dx, float dy, float dz){x = dx; y = dy; z = dz;}

void set(Point3& p) {x = p.x; y = p.y; z = p.z;}

Point3(float xx, float yy, float zz) {x = xx; y = yy; z = zz;}

Point3() {x = y = z = 0;}

void build4tuple(float v[])

{ // load 4-tuple with this color: v[3] = 1 for homogeneous

v[0] = x; v[1] = y; v[2] = z; v[3] = 1.0f;

}

};

Vector3 Class

class Vector3{ public:

float x,y,z;

void set(float dx, float dy, float dz){ x=dx; y=dy; z=dz;}

void set(Vector3& v){ x = v.x; y = v.y; z = v.z;}

void flip(){x = -x; y = -y; z = -z;} // reverse this vector

void setDiff(Point3& a, Point3& b){ x =a.x - b.x; y =a.y -
b.y; z =a.z - b.z;}

void normalize();//adjust this vector to unit length

Vector3(float xx, float yy, float zz){x = xx; y = yy; z = zz;}

Vector3(Vector3& v){x = v.x; y = v.y; z = v.z;}

Vector3(){x = y = z = 0;} //default constructor

Vector3 cross(Vector3 b); //return this cross b

float dot(Vector3 b); // return this dotted with b };

Camera Class

class Camera{

private:

Point3 eye;

Vector3 u, v, n;

double viewAngle, aspect, nearDist, farDist; // view
volume shape

void setModelviewMatrix(); // tell OpenGL where the
camera is

public:

Camera(); // constructor

// continued next slide

Class Camera (2)

void set(Point3 eye, Point3 look, Vector3 up);

// like gluLookAt()

void roll(float angle); // roll it

void pitch(float angle); // increase pitch

void yaw(float angle); // yaw it

void slide(float delU, float delV, float delN); // slide it

void setShape(float vAng, float asp, float nearD,
float farD);

void getShape(float &vAng, float &asp, float &nearD,
float &farD);

};

Implementing set()

void Camera:: set(Point3 Eye, Point3 look, Vector3 up)

{ // create a modelview matrix and send it to OpenGL

eye.set(Eye); // store the given eye position

n.set(eye.x - look.x, eye.y - look.y, eye.z - look.z);

// make n

u.set(up.cross(n)); // make u = up X n

n.normalize(); u.normalize(); // make them unit
length

v.set(n.cross(u)); // make v = n X u

setModelViewMatrix(); // tell OpenGL

}

Implementing

setModelViewMatrix()
void Camera :: setModelviewMatrix(void)

{ // load modelview matrix with existing camera values

float m[16];

Vector3 eVec(eye.x, eye.y, eye.z); // a vector version of
eye

m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -
eVec.dot(u);

m[1] = v.x; m[5] = v.y; m[9] = v.z; m[13] = -eVec.dot(v);

m[2] = n.x; m[6] = n.y; m[10] = n.z; m[14] = -
eVec.dot(n);

m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1.0;

glMatrixMode(GL_MODELVIEW);

glLoadMatrixf(m); // load OpenGL’s modelview matrix }

Flying the Camera through a Scene

• The user flies the camera through a scene

interactively by pressing keys or clicking the

mouse.

– For instance, pressing ‘u’ might slide the camera up

some amount, pressing ‘y’ might yaw it to the left, and

pressing ‘f’ might slide it forward.

• There are six degrees of freedom for adjusting a

camera: it can fly in three dimensions, and it can

be rotated about any of three coordinate axes.

We first develop the slide() function.

Flying the Camera through a Scene

(2)
• Sliding a camera means to move it along one of its own

axes, that is, in the u, v, or n direction, without rotating it.

• Since the camera is looking along the negative n-axis,
movement along n is forward or back. Similarly,
movement along u is left or right, and along v is up or
down.

• To move the camera distance D along its u-axis, set eye
to eye + D u.

• For convenience, we can combine the three possible
slides in a single function. slide(delU, delV, delN) slides
the camera amount delU along u, delV along v, and delN
along n.

Code for slide()

void Camera:: slide(float delU, float delV, float

delN)

{

eye.x += delU * u.x + delV * v.x + delN * n.x;

eye.y += delU * u.y + delV * v.y + delN * n.y;

eye.z += delU * u.z + delV * v.z + delN * n.z;

setModelViewMatrix();

}

Flying the Camera through a Scene

(3)

• We want to roll, pitch, or yaw the camera (rotate
it around one of its own axes). We look at rolling
in detail; yaw and pitch are similar.

• To roll the camera is to rotate it about its own n
axis. Both the directions u and v must be
rotated.

• We form two new axes u’ and v’ that lie in the
same plane as u and v but have been rotated
through the angle α degrees.

Flying the Camera through a Scene

(4)

• u’ = cos(α) u + sin(α) v

• v’ = -sin(α) u + cos(α) v

• Finding yaw and pitch

are done similarly.

Code for roll()

void Camera :: roll (float angle)

{ // roll the camera through angle degrees

float cs = cos(3.14159265/180 * angle);

//convert degrees to radians

float sn = sin(3.14159265/180 * angle);

Vector3 t(u); // remember old u

u.set(cs*t.x - sn*v.x, cs*t.y - sn*v.y, cs*t.z - sn*v.z);

v.set(sn*t.x + cs*v.x, sn*t.y + cs*v.y, sn*t.z + cs*v.z);

setModelViewMatrix();

}

Flying the Camera through a Scene

• Code to set up perspective projection:
glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluPerspective (theta, aspect, near, far);

• theta is the viewangle, aspect is W/H for

the view plane, and near and far are

distances to the near and far planes.

– Near and far are converted to negative

numbers by OpenGL.

Camera setShape() Function

setShape (...) incorporates the code to set

up a perspective projection:

// set values of viewAngle, aspect,

nearDist, farDist

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluPerspective (viewAngle, aspect,

nearDist, farDist);

Building the Camera in a Program

(5)

• Fig. 7.13: Code for creating and flying camera.

• A global Camera is declared and Camera

controls are set up in the myKeyboard() function.

• ‘F’ – 64 = ‘f’

• glutPostRedisplay() is used to draw the scene

after camera changes.

• Double-buffering is used to make the animation

smooth (recall Ch. 3).

Using a Camera with SDL

• There are two global objects:

Camera cam;

Scene scn;

• In main() an SDL file is read and parsed

using scn.read(“myScene.dat”). Finally, in

myDisplay(void), simply replace the call to

the function that draws the scene with

scn.drawSceneOpenGL();

Perspective Projections of 3-D

Objects

• The graphics pipeline: vertices start in world

coordinates; after MV, in eye coordinates, after

P, in clip coordinates; after perspective division,

in normalized device coordinates; after V, in

screen coordinates.

Perspective Projections of 3-D

Objects (2)

• Each vertex v is multiplied by the modelview
matrix (VM), containing all of the modeling
transformations for the object; the viewing part
(V) accounts for the transformation set by the
camera’s position and orientation. When a
vertex emerges from this matrix it is in eye
coordinates, that is, in the coordinate system of
the eye.

• The figure shows this system: the eye is at the
origin, and the near plane is perpendicular to the
z-axis, located at z = -N.

Perspective Projections of 3-D

Objects (3)
• A vertex located at P in eye coordinates is passed

through the next stages of the pipeline where it is
projected to a certain point (x*, y*) on the near
plane, clipping is carried out, and finally the
surviving vertices are mapped to the viewport on the
display.

Perspective Projections of 3-D

Objects (4)

• We erect a local coordinate system on the near

plane, with its origin on the camera’s z-axis.

Then it makes sense to talk about the point x*

units right of the origin, and y* units above the

origin.

Perspective Projections of 3-D

Objects (5)

• (Px, Py, Pz) projects to (x*, y*).

• x*/Px = N/(-Pz) and y*/Py = N/(-Pz) by similar

triangles.

• Thus P* = (x*, y*) = N Px/(-Pz), N Py/(-Pz)).

Perspective Projection Properties

• |Pz| is larger for points further away from the

eye, and, because we divide by it, causes

objects further away to appear smaller

(perspective foreshortening).

• We do not want Pz ≥ 0; generally these points (at

or behind eye) are clipped.

• Projection to a plane other than N simply scales

P*; since the viewport matrix will scale anyway,

we might as well project to N.

Perspective Projection Properties

(2)
• Straight lines project to straight lines. Consider the line

between A and B. A projects to A’ and B projects to B’.

• In between: consider the plane formed by A, B, and the
origin. Since any two planes intersect in a straight line,
this plane intersects the near plane in a straight line.
Thus line segment AB projects to line segment A’B’.

Example Projections of the Barn

• View #1: The near plane coincides with the front of the
barn.

• In camera coordinates all points on the front wall of the
barn have Pz = -1 and those on the back wall have Pz = -
2. So any point (Px, Py, Pz) on the front wall projects to P’
= (Px, Py) and any point on the back wall projects to P’ =
(Px /2, Py / 2).

• The foreshortening factor is two for points on the back
wall. Note that edges on the rear wall project at half their
true length. Also note that edges of the barn that are
actually parallel in 3D need not project as parallel.

Example (2)

• In part b, the camera has been moved

right, but everything else is the same.

Example (3)

• In part c, we look down from above and

right on the barn.

Perspective Projection of Lines

• Straight lines are transformed to straight lines.

• Lines that are parallel in 3D project to lines, but
not necessarily parallel lines. If not parallel, they
meet at some vanishing point.

• If Pz ≥ 0, lines that pass through the camera
undergo a catastrophic "passage through
infinity"; such lines must be clipped.

• Perspective projections usually produce
geometrically realistic pictures. But realism is
strained for very long lines parallel to the
viewplane.

Projection of Straight Lines (2)

• Effect of projection → on parallel lines: P = A + ct →
p(t) = -N ([Ax + cxt]/[Az + czt], [Ay + cyt]/[Az + czt]) =
- N/[Az + czt] (Ax + cxt, Ay + cyt).

• N is the distance from the eye to the near plane.

• Point A → p(0) = - N/Az (Ax, Ay).

• If the line is parallel to plane N, cz = 0, and p(t) = -
N/Az (Ax + cxt, Ay + cyt).

• This is a line with slope cy/cx and all lines with
direction c→ a line with this slope.

• Thus if two lines in 3D are parallel to each other
and to the viewplane, they project to two parallel
lines.

Projection of Straight Lines (3)

• If the line is not parallel to plane N (near plane), look
at limit as t becomes ∞ for p(t), which is -N/cz (cx,
cy), a constant.

– All lines with direction c reach this point as t
becomes ∞; it is called the vanishing point.

• Thus all parallel lines share

the same vanishing point.

• In particular, these lines

project to lines that are

not parallel.

Projection of Straight Lines (≤)

• Geometry of

vanishing point: A

projects to A’, B

projects to B’, etc.

Very remote points

on the line project

to VP as shown.

• Line from eye to

VP becomes

parallel to line AB.

Example: horizontal grid in

perspective

Projection of Straight Lines (5)

• Lines that pass
behind the eye have
a different geometry
for the vanishing
point; as C
approaches the eye
plane, its projection
moves infinitely far to
the right.

• When it reaches the
eye plane, it jumps
infinitely far to the left
and starts moving
right.

Eye Effects

• Note that technically the eye is not a

planar surface, but a curved one. This fact

results in anomalies such as a slight curve

appearing in the view of very long parallel

lines.

Incorporating Perspective in the

Graphics Pipeline

• We need to add depth information

(destroyed by projection).

• Depth information tells which surfaces are

in front of other surfaces, for hidden

surface removal.

Incorporating Perspective in the

Graphics Pipeline (2)
• Instead of Euclidean distance, we use a

pseudodepth, -1 ≤ Pz' ≤ 1 for -N >z >-F. This
quantity is faster to compute than the Euclidean
distance.

• We use a projection point (x*, y*, z*) = [N/(-
Pz)][NPx, NPy, N (a + bPz)], and choose a and b
so that Pz' = -1 when Pz = -N and 1 when Pz =
-F.

• Result: a = -(F + N)/(F - N), b = -2FN/(F - N).

• Pz' increases (becomes more positive) as Pz
decreases (becomes more negative, moves
further away).

Illustration of Pseudo-depth Values

Incorporating Perspective in the

Graphics Pipeline (3)

• Pseudodepth values bunch together as

-Pz gets closer to F, causing difficulties for

hidden surface removal.

• When N is much smaller than F, as it

normally will be, pseudodepth can be

approximated by pseudodepth
N

Pz
 1

2

